Characterization of Wind Velocities in the Upstream Induction Zone of a Wind Turbine using Scanning Continuous-Wave Lidars

نویسندگان

  • Eric Simley
  • Nikolas Angelou
  • Torben Mikkelsen
  • Mikael Sjöholm
  • Jakob Mann
  • Lucy Y. Pao
چکیده

As a wind turbine extracts energy from the wind, induced wind velocities, lower than the freestream velocity, will be present both upstream and downstream of the rotor. In this study, the upstream induction zone of a 225 kW horizontal axis Vestas V27 wind turbine located at the Danish Technical University’s Risø campus is investigated using a scanning Light Detection and Ranging (lidar) system. Three short-range continuous-wave “WindScanner” lidars are positioned in the field around the V27 turbine allowing detection of all three components of the wind velocity vectors within the induction zone. The mean wind speeds in the upstream induction zone are measured by scanning a horizontal plane at hub height and a vertical plane centered at the middle of the rotor extending roughly 1.5 rotor diameters upstream of the rotor. Turbulence statistics in the induction zone are studied by more rapidly scanning along individual lines perpendicular to the rotor at different radial distances from the hub. The mean velocity measurements reveal that the longitudinal velocity reductions become greater closer to the rotor plane and closer to the center of the rotor. The relative velocity reductions become smaller when the turbine’s coefficient of power decreases. Additionally, the mean radial wind speeds were found to increase close to the edge of the rotor disk indicating an expansion of the incoming flow around the rotor. Turbulence calculations in the induction zone suggest that the standard deviation of the longitudinal wind component appears to decrease close to the rotor, while the standard deviation of the radial wind component increases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lidar-based Research and Innovation at DTU Wind Energy – a Review:

As wind turbines during the past decade have increased in size so have the challenges met by the atmospheric boundary-layer meteorologists and the wind energy society to measure and characterize the huge-volume wind fields surpassing and driving them. At the DTU Wind Energy test site “Østerild” for huge wind turbines, the hub-height of a recently installed 8 MW Vestas V164 turbine soars 143 met...

متن کامل

Field Measurements of Wind Turbine Wakes with Lidars

Field measurements of the wake flow produced from a 2-MW Enercon E-70 wind turbine were performed using three scanning Doppler wind lidars. A GPS-based technique was used to determine the position of the wind turbine and the wind lidar locations, as well as the direction of the laser beams. The lidars used in this study are characterized by a high spatial resolution of 18 m, which allows the de...

متن کامل

Generic Methodology for Field Calibration of Nacelle-Based Wind Lidars

Nacelle-based Doppler wind lidars have shown promising capabilities to assess power performance, detect yaw misalignment or perform feed-forward control. The power curve application requires uncertainty assessment. Traceable measurements and uncertainties of nacelle-based wind lidars can be obtained through a methodology applicable to any type of existing and upcoming nacelle lidar technology. ...

متن کامل

Performance based assessment of offshore wind turbine platform using the constrained new wave method

The purpose of this study is to provide a more accurate and practical method than static and spectral methods to assess the offshore wind turbines that are loaded with both wave and wind time history, the structure is evaluated by increasing the load intensity in successive steps to the stage of failure and the performance of the platform in different wave patterns are investigated. In this stu...

متن کامل

Dynamic Analysis of Offshore Wind Turbine Towers with Fixed Monopile Platform Using the Transfer Matrix Method

In this paper, an analytical method for vibrations analysis of offshore wind turbine towers with fixed monopile platform is presented. For this purpose, various and the most general models including CS, DS and AF models are used for modeling of wind turbine foundation and axial force is modeled as a variable force as well. The required equations for determination of wind turbine tower response ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015